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Abstract

®

CrossMark

We report the influence of the capping layer thickness on the effective magnetic damping and
the effective spin—orbit torque (SOT) efficiency in Ta/Pt/Co structures via spin-torque
ferromagnetic resonance measurements. The SOT efficiency first increases with increasing
capping layer thickness (dr,), reaching a large value of 0.199 at dt, = 1.4 nm, then decreases
with further increases in dr,. This can be attributed to a competition between the additional SOT
field generated by the Rashba—Edelstein effect and the reduced net spin current effect. It has
been demonstrated that the magnetic damping factor decreases with increasing capping layer
thickness. The high SOT efficiency and low magnetic damping factor suggest the great potential

of the Ta/Pt/Co for low-power spintronic technologies.

Supplementary material for this article is available online

Keywords: SOT efficiency, magnetic damping factor, interfacial effect, ST-FMR

1. Introduction

Spin—orbit torques (SOTs) have attracted significant attention
as an effective means to electrically regulate the magnetiza-
tion direction of magnetic materials [1-4]. The next gener-
ation of spintronics devices based on SOT has been widely

* Authors to whom any correspondence should be addressed.

used in SOT magnetic random-access memory (SOT-MRAM),
spin-nano-oscillator, and magnetic logic devices due to their
significant advantages of high-speed operation and ultra-low
energy consumption [2]. The generation mechanism of SOT
encompasses multiple physical pathways, including the spin
Hall effect (SHE), the Rashba—Edelstein effect (REE), the
orbital Hall effect, and magnons [1]. Specifically, SHE occurs
primarily within the bulk material, relying on spin—orbit coup-
ling to generate a transverse spin current, with the strength

© 2025 IOP Publishing Ltd. All rights, including for text and
data mining, Al training, and similar technologies, are reserved.
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of this effect depending significantly on the strength of spin—
orbit coupling within the material. In contrast, REE arises from
structural inversion symmetry breaking, leading to spin accu-
mulation at the interface, which is related to the spin—orbit
coupling at the interface and the interface scattering situation.

Enhancing SOT efficiency £gsor (defined as the ratio of
the spin current density Js to the charge current density
J.) is pivotal in reducing the device’s power consumption
[3]. Consequently, developing new materials and explor-
ing novel physical mechanisms to enhance the performance
of SOT devices have emerged as key objectives in current
research. To date, researchers have conducted in-depth stud-
ies on heavy metals (HMs) and their alloys [5-7], antifer-
romagnetic materials [8], oxides [9], and transition metal
dichalcogenides [10].

Recently, there has been a surge of interest in the effects of
different HM/FM and HM-alloy/FM interface combinations
on SOT efficiency [11-15]. A variety of interface-engineering
techniques have been employed to facilitate SOT enhance-
ment. It has been demonstrated that incorporating two heavy-
metal layers with opposite SOT efficiency signs on oppos-
ing sides of the ferromagnetic layer can enhance the SOT
efficiency in the multilayer [16]. It has long been hypothes-
ized that the net spin-moment generation efficiency in the
HM1/HM2/FM system is diminished when two layers of HMs
with opposite spin Hall angles are used, such as W and Pt, or
Ta and Pt. However, Ma et al demonstrated that a heavy-metal
bilayer structure with opposite spin Hall angles can facilit-
ate competing spin current generation in Pt/W/CoFeB [17].
The out-of-plane effective field can achieve field-free SOT
switching of a perpendicular CoFeB layer. An enhanced spin
Hall magnetoresistance due to spin accumulation has been
observed in Pt/Y3;FesO, (YIG) with a capping layer [18].
Similarly, Hui et al also reported that the net spin current at the
Pt/NiFe interface was modulated by tailoring the thickness of
the Ta capping layer, which enhanced the spin accumulation
at the Pt/NiFe interface [19]. Karube er al demonstrated the
additional SOT field generation at the W/Pt interface under the
REE [20]. Very recently, Li et al have reported a large orbital—
spin conversion in the Ta/Pt/TmsFesO;, heterostructure due
to the conversion of the orbital currents generated by Ta into
spin currents in the Pt interior by the orbital Hall effect [21].
However, achieving both a low effective damping factor and
high SOT efficiency is crucial for driving the adoption of SOT
devices, as it helps to minimize the critical switching current
[22]. Among existing techniques, spin-torque ferromagnetic
resonance (ST-FMR) is a popular and powerful tool for quan-
tifying SOT, as it can simultaneously characterize SOT effi-
ciency and the damping magnetic factor [23].

In this work, we investigate the influence of the capping
layer thickness on the effective magnetic damping and SOT
efficiency in the Ta/Pt/Co trilayer via the ST-FMR measure-
ments technique. The findings indicate that the Ta capping
layer reduces effective magnetic damping by 35% while con-
currently increasing SOT efficiency by 1.3-fold relative to that
observed in Co/Pt. As the Ta layer thickness increases, the
effective SOT efficiency initially rises, attains a maximum

at dr, = 1.4 nm, and subsequently declines as the thickness
increases further. This might be attributed to the additional
SOT field contribution engendered by the interfacial REE,
which arises from the spin accumulation at the Ta/Pt inter-
face. Meanwhile, the effective damping factor declines rap-
idly with increasing Ta layer thickness. For thicknesses greater
than 1.2 nm, the effective damping factor shows a tendency
toward stability. Moreover, the calculated minimum critical
switching current density can be reduced by 46%.

2. Experiment

The film stacks were deposited by direct current (DC) sput-
tering onto thermally oxidized silicon substrates at an argon
(Ar) partial pressure of 0.27 Pa. The base pressure of the
sputter chamber was maintained below 1.33 x 10~% Pa.
The film stacks were composed of the following layers:
Ta(dr,)/Pt(5 nm)/Co(5 nm)/Si(Si0,), with dr, ranging from
0 to 5 nm. The thickness of the stack was calibrated using
an atomic force microscope [24]. The crystal quality and
magnetic properties were examined using x-ray diffraction
(XRD) and a vibrating sample magnetometer (VSM). For ST-
FMR measurements, the Ta/Pt/Co stacks were patterned into
rectangular-shaped strips with a width of 10 ym and a length
of 50 pm. This was achieved using electron beam lithography
and argon ion milling, respectively. Ta (5 nm)/Cu (200 nm)/Pt
(3 nm) electrodes were subsequently deposited on the pat-
terned structures using a combination of electron-beam litho-
graphy and lift-off. An illustration of the measurement setup
and device, and a detailed optical image of the patterned struc-
ture, is provided in figure 1(a).

In an ST-FMR measurement, a microwave radio frequency
(RF) charge current traverses the SOT material, giving rise
to an AC SOT, which induces FMR of the adjacent FM [5,
25]. The oscillating SOT will cause oscillations in the resist-
ance, attributed to the anisotropic magnetoresistance of the FM
layer. Mixing the RF current with the oscillating resistance
using a bias tee yields a rectified DC voltage signal (Vyix). To
ensure that the measured DC voltage is within the linear range
and that the microwave heating effect is negligible, the input
microwave power is set to 18 dBm (see supplement mater-
ial). All measurements were performed at room temperature.
The detailed methodology for the ST-FMR measurements is
described in earlier reports [5, 22].

3. Results and discussion

The XRD pattern for the Pt(5 nm)/Co(5 nm) film in the range
of 35°-50° is shown in figure 1(b). Two strong diffraction
peaks corresponding to Pt(111) and Co(002) are observed
at 39.8° and 44.7°, respectively, indicating that the bilayer
has a well-ordered crystal structure. Figure 1(c) illustrates
the M—H loops of the Ta(1.4 nm)/Pt(5 nm)/Co(5 nm) film in
both in-plane and out-of-plane directions, which demonstrate
in-plane magnetic anisotropy. The saturation magnetization
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Figure 1. (a) Schematic illustration of the Ta/Pt/Co multilayer device for the ST-FMR measurement. The 7r1. 4+ Toe term denotes the sum of
the field-like torque and the Oersted field torque, while mpy. is the damping-like torque. J. and J; are the charge current density and the spin

current density, respectively. The inset is the optical image of the fabricated device and electrodes. (b) XRD patterns for Pt(5 nm)/Co(5 nm)

film grown on Si(100) substrates. (¢) M—H loops for Ta(1.4 nm)/Pt(5 nm)/Co(5 nm) film.

measured by VSM is 1067 kA m~!, consistent with previous
reports [12].

Figure 2(a) shows the ST-FMR spectra for the
Ta(1.4 nm)/Pt(5 nm)/Co(5 nm) sample measured with an
external in-plane magnetic field applied at an angle of
45 degrees with respect to the longitudinal direction of
the device. The ST-FMR spectra were measured over a
microwave frequency range of 10-22 GHz. As the fre-
quency increases, the resonance field H,. increases accord-
ingly. Figure 2(b) shows the example of ST-FMR spec-
tra for Ta(dr,)/Pt(5 nm)/Co(5 nm) at a fixed frequency of
14 GHz. The FMR curves show a downward shift in the
resonance field with increasing Ta thickness. This reson-
ance field shift for dr, > 0.6 nm indicates an increase in
the effective magnetization of the Co layer [26]. Figures 2(b)
and (c) show a detailed and representative fit result of the
ST-FMR spectrum at f = 14 GHz for dp, = 0 nm and
1.4 nm, respectively. The ST-FMR spectra can be fitted by
Viix =S8+ Fs +A - Fa + C, where Fg and F are the symmet-

ric {A2 / [(H — Hye)* + Az} } and asymmetric Lorentzian
function components {A (H—Hyes)/ {(H — Hyo) + Az} },

S and A are the amplitudes of the symmetric and antisym-
metric components of the mixing voltage, A is the reson-
ance linewidth, H is the resonance magnetic field, and C
is a constant representing the voltage offset [25]. In the ST-
FMR signal, the symmetric component is proportional to the
damping-like effective torque. In contrast, the anti-symmetric
component results from the summation of the Oersted field
torque and the field-like effective torque. The Oersted field of

microwave is considered to be the only contribution to field-
like torque, while damping-like torque is mainly caused by
spin current converted from charge current flowing in the HM
layer, which can be attributed to SHE and/or the REE [25].
According to previous work, the spin-pumping voltage signal
has a negligible impact on the symmetric voltage component
[10, 22].

The symmetric (V) and antisymmetric (V 5) contributions
of the Lorentzian line shapes are represented by the red and
blue curves, as shown in figures 2(c) and (d), respectively.
It can be observed that the Vi at dp, = 1.4 nm is slightly
smaller than that at dr, = 0 nm, which may be attributed to
the shunt effect. Furthermore, it can be observed that there is
minimal distinction between the symmetric and asymmetric
components.

Moreover, we examine the variation in SOT efficiency with
Ta layer thickness. The effective SOT efficiency is estimated
as the ratio of the spin current density to the RF current density.
It can be calculated from the line shape of ST-FMR spectra. It
is given by [25],

/2
Js S euoMstcodum Mg
{sor Jo A h ( + Hres> M

where Jg is the spin current density generated within the HM,
Jc is the applied charge current density, and fc, and dygm
are the thicknesses of Co and HM layers, respectively. In
equation (1), we use the Pt layer thickness as the heavy-metal
layer thickness. The effective SOT efficiency as a function of
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Figure 2. (a) The ST-FMR spectra of Ta(1.4 nm)/Pt(5 nm)/Co(5 nm) film from 10 to 22 GHz with fitted curves. (b) The ST-FMR spectra at
a fixed frequency of 14 GHz for Ta/Pt/Co samples with varying dr.. Vmix, along with the fitted (green), symmetric (Vs, red), and asymmetric
(Va, blue) Lorentzian functions used for the fitting, measured at 14 GHz for Ta capping layer thicknesses of O nm (c) and 1.4 nm (d).
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parallel circuit model. (b) A schematic illustration of the generation and transport of the spin current and orbital current in the Ta/Pt/Co

heterostructure.

Ta thickness is plotted in figure 3(a). The & sor changes non-
monotonically with increasing dr,. A rapid increase in € sor is
observed when the thickness of the Ta layer is less than 1.4 nm,
reaching a maximum value as large as 0.199 at 1.4 nm, after
which it exhibits a gradual decline as the thickness increases. It
was determined that the £ gor of the Ta(5)/Pt(5)/Co(5) sample
reduced to 0.077. A large increase (33.6%) in the effective
SOT efficiency for dy, = 1.4 nm was observed compared to
dt, = 0nm. This demonstrates that, while the charge-spin con-
version efficiency resulting from the REE at the Ta/Pt interface

is lower than the contribution from the bulk SHE, it is still con-
siderable. It is to be noted that the SOT efficiency of all Ta/Pt
multilayer films is positive, as indicated by the sign of the S/A.
This suggests that adding the Ta layer does not change the sign
of the spin Hall angle, likely because Ta’s spin Hall angle is rel-
atively small compared to Pt’s. Meanwhile, the SOT efficiency
of the pure Ta layer was found to be —0.03 (see supplement
material).

Applying the parallel circuit model with the resistivity of
Ta, Co, and Pt (199, 30, and 47 u£2 cm) [16, 27], yielded a



J. Phys.: Condens. Matter 37 (2025) 475801

Z Xu et al

current percentage range of 39.0%—35.7% through the Pt layer
and 0%—-8.4% went through the Ta layer, in the thickness of
the Ta capping layer from O to 5 nm. It is noted that the current
through the Ta layer increases monotonically. In contrast, the
current through the Pt layer decreases monotonically as the Ta
layer thickness increases. Given the opposite SHA signs of Pt
(0.15) and Ta (—0.03), the overall SOT efficiency is expected
to decrease monotonically if no additional interfacial contribu-
tions are present, as shown in figure 3(a). As the spin currents
with opposite polarization directions cancel each other out, the
SOT efficiency of the HM bilayer structure is lower than that
of the single-layer HM structure in the absence of additional
SOT effects, which is different from the variation of the effect-
ive SOT efficiency with respect to the Ta capping layer thick-
ness shown in figure 3(a). And similar SOT enhancement is
observed in both Pt/W/Py and W/Pt/Py film stacks, which is
caused by the non-equilibrium spin accumulation at the W/Pt
interface via REE. As shown in figure 3(b), spin currents are
generated in the Ta layer by applying a charge current along
the x-direction due to the SHE which is used to reach the Ta/Pt
interface. However, the Pt thicknesses employed in our system
are all in the range of 5 nm, which is larger than the spin diffu-
sion length of Pt in the Pt/Co system (2.1 nm, see supplement
material). Therefore, the spin current in the Ta layer, due to
the bulk contribution of the SHE is impeded from crossing the
Pt layer, resulting in a greater accumulation of spin current at
the Ta/Pt interface. The Ta and Pt layers exhibit opposite spin
Hall angles, resulting in spin currents with opposite polariz-
ations. The generation of the additional SOT field primarily
arises from the following four processes: (1) accumulation of
REE spins at the Ta/Pt interface, (2) conversion of spin current
at the Ta/Pt interface into orbital current, (3) diffusion trans-
port of orbital current within Pt, and (4) conversion of orbital
current into spin current due to strong spin coupling in the Pt
layer, which is subsequently absorbed by the Co layer.

Thus, the nonmonotonic variation of SOT efficiency might
be ascribed to a competition between the additional SOT field,
which is generated by the interfacial REE originating from
spin accumulation, and the reduced net spin current effect.
Based on the Luan ef al model [18], owing to the opposite spin
Hall angles of Pt and Ta, the spin-dependent chemical poten-
tials of Pt and Ta have the same sign at the Ta/Pt interface.
At small thicknesses, the Ta layer primarily serves as a spin
sink, enhancing spin accumulation at the Ta/Pt interface and
thereby generating an additional SOT field. On the other hand,
as the Ta layer thickness increases, the shunting effect intensi-
fies, allowing more charge current to flow into the Ta layer. At
the same time, as the spins generated by the REE at the Ta/Pt
interface diffuse into the Ta layer, the net spin current at the
interface decreases as the Ta layer becomes thicker [20]. In the
case of a thin Ta layer, the additional SOT field has a dominant
influence, leading to enhanced SOT efficiency. Conversely, in
the presence of a thicker Ta layer, the opposing sign of the
spin Hall angles results in a net spin current reduction effect
that outweighs the influence of the additional SOT field, res-
ulting in a continuous decrease in SOT efficiency. This is con-
sistent with the damping-like torque enhancement observed in

W/Pt/CoFeB multilayers [28]. In their work, even though the
Pt thickness is 5 nm, the additional 3 nm thick W layer still
enhances SOT efficiency.

The effective magnetization (M.¢) values were determined
by fitting the resonance frequency (f) as a dependence on the
resonance field (H,s) in figure 4(a) using the Kittel formula,
given the negligible in-plane magnetic anisotropy. The Kittel
equation can be written as f = y[Hyes (Hyes + Megr)]?, where v
is the gyromagnetic ratio [29]. The obtained M. as a function
of dr, is shown in figure 4(b). When the Ta thickness is 0,
the Mg is 1.3 T, consistent with previously reported results
[22]. As the Ta thickness increases, the effective magnetization
rises, and Mg remains approximately 1.55 T even after dr,
exceeds 1.2 nm.

To determine the effective damping constant aeg, the
frequency-dependent linewidths for different Ta thicknesses
are plotted in figure 4(c). It demonstrates that there is no devi-
ation from a strict linear correlation across the entire frequency
spectrum, indicating that the two-magnon scattering mechan-
isms in the film have a minimal impact and do not result in a
nonlinear trend. Furthermore, the dt, = 0 nm slope is consider-
ably steeper than at other thicknesses. This indicates that incor-
porating the Ta layer reduces the system’s damping factor.

To examine the variation of the damping factor concern-
ing dr,, the variation of the damping factor concerning the
Ta thickness is obtained through linear fitting via the equation
AH = AHinn + faege/y [30], as illustrated in figure 4(d). Here,
the inhomogeneous linewidth AHjy, results from the inhomo-
geneity of the magnetic films and depends on the lattice mis-
match at the HM/FM interface [31]. From the fitting, the value
of ag for dr, = 0 nm is 0.0260, consistent with the previously
reported value of Pt/Co. It is indicated that disparate trends are
observed between the magnetic damping factor and the SOT
efficiency, suggesting that alternative mechanisms may under-
lie the observed shifts in these variables.

As the Ta thickness increases from 0 to 1.2 nm, the mag-
netic damping factor decreases rapidly to ~0.014, and as the
thickness continues to rise, the damping factor remains at
0.017-0.014. The relationship between a¢ and the Ta capping
layer thickness is found to closely follow an exponential phe-
nomenological expression: g o< ae~%*/? 4 ¢ in which the
parameters a = 0.011, » = 0.58 nm, and ¢ = 0.015 [20].
In the exponential phenomenological expression, a represents
the variable magnetic damping factor, b is a length parameter
associated with the spin diffusion coefficient, and ¢ denotes a
constant representing the damping offset. It can be observed
that the magnetic damping factor values remain larger than
the intrinsic magnetic damping factor values of Co monolayer
films. The reduction of the Co magnetic damping factor in
Ta/Pt/Co multilayer films is attributable to an external mech-
anism. Given that the thickness of the Pt layer is greater than
its spin diffusion length, the observed increase in the SOT effi-
ciency is primarily attributed to the Pt layer. It can be reas-
onably assumed that an additional contribution is respons-
ible for the observed decrease in magnetic damping [32, 33].
The sources of additional damping may include spin memory
loss at the interface, magnetic proximity effect, spin-pumping
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Figure 4. (a) The resonance field vs resonance frequency (a), the effective magnetization (b), the linewidth vs resonance frequency (c), and
the effective damping factor (d) as a function of Ta capping layer thickness. The solid lines are fitting curves.

effect, and other factors. As the thickness of Ta increases,
neither the thickness of Pt nor the Pt/Co interface changes.
Consequently, the spin memory loss and magnetic proxim-
ity effects are primarily attributed to Pt/Co and can thus be
excluded as a potential influencing factor. The spin-pumping
effect is achieved by magnetization precession in the FM
layer, which generates spin currents at the NM/FM interface.
These spins transfer angular momentum to the neighboring
NM layer, which functions as a spin sink by absorbing spin
currents after crossing the spin diffusion length. This results in
an enhancement of the Gilbert damping parameter. As the con-
figuration of the Pt/Co interface remains unaltered, the spin—
orbit coupling at this interface should also remain unaltered.
Therefore, the observed weakening of the spin-pumping effect
can be attributed to the reduction in the net spin current and the
anti-damping raised from the REE [34].

Total magnetic damping from the spin-pumping effect
includes contributions from the Pt and Ta layers, Aoy 1ot =
ap (Pt) — ap (Ta). According to the spin pumping theory, the
thickness dependence of the damping can be described by,

_ 8B

AO(SP = Mist

—2d
Gt (1 e ) )
where g is the spectroscopic splitting factor, ug is the Bohr
magneton, G'¥ is the spin mixing conductance, and A is the
spin diffusion length. The Pt and Ta layers are both spin sinks

in the Ta/Pt/Co structure. Fitting the . as a function of Ta

capping layer thickness by equation (2), the obtained A\yy and
G™ are 1.16 nm and 15.7 nm~2, respectively, which are close
to the reported values of 1.5 nm and 15 nm~2 [35]. Liu et al
also observed that the magnetic damping and the inhomogen-
eous linewidth broadening decrease with increasing Ta layer
thickness in Ta/Cu/FeNi films [36].

Furthermore, using an in-plane damping-like SOT to
reverse in-plane magnetization, the critical current density is
given by [16], Joo = MegMstemea/ hﬁgg, which is proportional
to o/ 9§fg[ According to the results of figures 3(a) and 4(d), the
J oo of the Ta(1.2)/Pt(5)/Co(5) sample was only 54.0% than that
of the Pt(5)/Co(5) sample. An improvement in the conversion
efficiency from charge current to spin current in the device,
as well as a lower critical current threshold and increased
device lifetime and reliability, can be achieved by increasing
the effective SOT efficiency and decreasing the effective mag-
netic damping constant [37].

4. Conclusions

In summary, our study demonstrates that by modulating the
thickness of the capping layer in bilayers with opposite spin
Hall angles, it is possible to diminish the magnetic damping
factor while simultaneously achieving a substantial enhance-
ment in SOT efficiency. This phenomenon might be attributed
to the emergence of an additional SOT field generated by the
interfacial REE. This stack design has significant potential to
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advance our understanding and practical implementation of
high-performance, low-power SOT-MRAM devices.
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